Chap.4: Lumière et couleur

				1/	
	Notions	Δt	mote	CIDC	•
_	Notions	Cι	111013	CIES	

- -Lumières monochromatique et polychromatique
- -Spectre
- -Loi de Wien
- •Exercices: n°20 p 75

Rappels: La lun	nière visible est une d	onde électromagné	tique dont la lo	ngueur d'ond	e dans le vid	e est comprise
entresupérieure à	etLes U.\	/ ont une longueur	d'onde dans le	vide inférieur	e à	et les I.R
	onochromatique ne	•		•	•	
•••••). Elle corres	pond a une seule ra	adiation contra	irement a ia iu	miere	••••••

I) Les couleurs d'une lumière :

- Observez et décrire le spectre des différentes sources de lumière mises à disposition.
- -Pour chaque source indiquer la sensation colorée perçue.

source lumineuse	spectre	couleur perçue	

- 1) Existe-t-il des lumières de compositions spectrales différentes qui permettent d'obtenir la même couleur perçue (même sensation de couleur)?
- 2) Des ampoules d'éclairage émettent une lumière perçue légèrement bleutée et d'autres une lumière perçue blanche et pourtant la composition spectrale de ces lumières semble identique : le spectre est continu du bleu au rouge.

Quelle différence existe-t-il entre les lumières émises par ces ampoules ?

II) <u>Couleur des corps chauffés</u> : Le spectre de lumière d'un corps incandescent est continu. Wien montre expérimentalement qu'à une température T la lumière émise a une intensité maximale pour une longueur d'onde donnée par la relation :

λ =	avec λ_{max} en m et T en Kelvin	(Loi de Wien)
Λ _{max} =	avec Amay ellillet i ellikelvill	LOI GE VVIEII /

<u>Application</u>: 1) Le filament d'une lampe à incandescence est à une température de 2500 K. Calculer la longueur d'onde de la radiation la plus intense et en déduire dans quel domaine elle se situe.

- 2) A quelle température doit-on chauffer un corps pour que la radiation la plus intense se situe dans le jaune (600 nm) ?
- 3) A l'aide du graphique (doc.13 p 70), expliquer pourquoi la couleur perçue d'une lampe à filament est jaune orangée.