Exercice1 corrigé

l'a) La midiane de S, est M=2
	L'exact interquartle de S, et P3-P, =2,1-1,9=0,2
ı.p	da majenne de S, est st, = 2,36,
	$\begin{pmatrix} ai & \mathbf{Z} = \frac{2\pi}{2}, mi \times i \\ N \end{pmatrix}$
	z' occut - type de S_A est VV avec $V = \frac{c^2}{1.5}$, mi πi^2 $= \frac{\pi^2}{2}$,
	i.e. $\sigma x = 1,22$.
20)	La modiane de Se est M2 = 2
	d'iract interquartile de 32 est 93-9, =2,1-1,9=0,2
	(la riprox 63-6, = 3,1-1,85 = 0,25 of acceptée: c'est celle donnée per la cakerlatrice).
2.9) La majeune de S2 00 \$\overline{x}_2 \simes 1,956
	2 rant - type de S2 cot Ta2 ~ 0, 134
20	La supression de la dernière valeur change
	kaucaup la majeune et l'éast-type, mais
	pro la médiane ni l'écout interquartle.
	Che reflite le fait que ces deux des morres
	caracteristiques ne sient pro sensibles are
	valeurs otresues de la soire.

Exercice2 corrigé

On considère la série statistique formée des valeurs entières suivantes :

En remplaçant une valeur par une autre valeur entière, on souhaite rendre l'écart-type le plus petit possible. Quelle modification faut-il faire?

Sur la série de départ, à l'aide de la calculatrice, on obtient comme moyenne $\overline{x} \approx 11, 11$.

L'écart-type décrit de la dispersion par rapport à la moyenne.

Pour réduire au maximum l'écart-type, on remplace la valeur de la série la plus éloignée de la moyenne : le 17.

On le remplace par l'entier le plus proche de la moyenne de la série constituée des nombres une fois qu'on a enlevé le 17. La moyenne devient alors 10,375.

On remplace donc le 17 par un 10.

Exercice3 corrigé

La pesée automatique d'un lot de 20 barquettes d'un produit alimentaire a donné les résultats suivants (arrondis au gramme):

> 300;311;315;308;311;317;308;309;311;312; 309;318;307;308;303;310;314;313;310;319.

1. Recopier et compléter le tableau d'effectifs de la série :

Poids x_i	300	303	307	308	309	310	311	312	313	314	315	317	318	319
Effectifs n_i	1	1	1	3	2	2	3	1	1	1	1	1	1	1
ECC	1	2	3	6	8	10	13	14	15	16	17	18	19	20

2. Déterminer la médiane et les quartiles de la série. Justifier.

L'effectif total est N = 20 (pair).

Donc la médiane est la demi-somme des deux valeurs centrales, la 10^e et la 11^e.

$$Me = \frac{310 + 311}{2} = 310, 5.$$

$$\frac{N}{4} = \frac{20}{4} = 5.$$

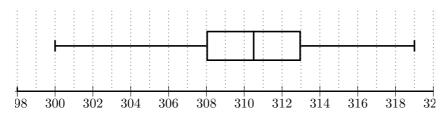
$$\frac{N}{4} = \frac{20}{4} = 5.$$

$$Q_1$$
 est la 5^e valeur : $Q_1 = 308$.

$$\frac{3N}{4} = \frac{60}{20} = 15.$$

$$Q_3$$
 est la 15^e valeur : $Q_3 = 313$.

3. Construire le diagramme en boîte de la série.



4. Rappeler les formules permettant de calculer la moyenne et l'écart-type d'une série statistique, puis, en utilisant le menu statistique de la calculatrice, donner la moyenne et l'écart type de la série (aucun détail de calcul n'est demandé).

$$m = \frac{x_1 n_1 + \dots + x_p n_p}{N}$$

$$= \frac{1}{20} (300 \times 1 + 303 \times 1 + \dots + 319 \times 1)$$

$$= 310,65$$

$$V = (f_1 x_1^2 + \dots + f_p x_p^2) - (m)^2$$

$$V = \frac{1}{20} (300^2 + 303^2 + \dots + 319^2) - (310, 65)^2$$

$$V = 20, 7275$$

$$s = \sqrt{V}$$

$$s \approx 4, 55$$

- 5. Un lot est accepté si les trois conditions suivantes sont remplies :
 - Le poids moyen m d'une barquette est de 310 g à 1 g près;
 - l'écart-type s des poids est inférieur à 5 g;

Exercice4 corrigé

A l'aide de la calculatrice, on détermine moyenne et écart-type pour l'entreprise P.Kein.

$$\bar{x} \approx 99,66$$
 et $\sigma \approx 1,648$.

Il y a 90 valeurs.

90 / 4 = 22,5 et 3/4 de 90 = 67,5, donc Q_3 et Q_1 sont respectivement

les 23° et 68° valeurs.

Ainsi : $Q_1 = 99$ et $Q_3 = 101$.

On peut maintenant, pour chaque entreprise déterminer $[\bar{x}-2\sigma;\bar{x}+2\sigma]$

et l'écart interquartile $Q_3 - Q_1$.

Pour P.Kein : $[\bar{x}-2\sigma;\bar{x}+2\sigma]$ donne environ [96,364 ; 102,956].

L'écart interquartile est égal à 2.

Ainsi, 81 / 90 soit 90 % de la production vérifie le critère A.

Pour B.Jing : $[\bar{x}-2\sigma; \bar{x}+2\sigma]$ donne [120,66; 128,52]

L'écart interquartile est égal à 3.

Ainsi, 100 % de la production vérifie le critère A.

A préférera B.Jing car le pourcentage trouvé est plus élevé,

B préférera P.Kein car l'interquartile est plus petit.