Pondichéry Mai 99

1: Résoudre dans C l'équation $z^2 + 2\sqrt{2}z + 4 = 0$.

On désignera par z_1 la solution dont la partie imaginaire est positive et par z_2 l'autre solution.

- 2 : a : Déterminer le module et un argument de chacune de ces solutions.
- **b**: Déterminer le module et un argument du nombre complexe $\left(\frac{z_1}{z_2}\right)^2$.
- 3: Dans le plan complexe rapporté au repère orthonormal direct (O ; \vec{u} , \vec{v}) (unité : 1cm), on considère : le point M $_1$ d'affixe $\sqrt{2}$ (1 + i), le point M $_2$ d'affixe $\sqrt{2}$ (1 i), et le point A d'affixe $\frac{\sqrt{2}}{2}$.
- a: Déterminer l'affixe du point M_3 , image de M_2 par l'homothétie h de centre A et de rapport 3.
- **b**: Déterminer l'affixe du point M₄, image de M₂ par la rotation r de centre O et d'angle $-\frac{\pi}{2}$
- c: Placer dans le même repère les points A, M₁, M₂, M₃ et M₄.
- d: Calculer $\frac{z_3 z_1}{z_4 z_1}$.
- e: Soit I le milieu du segment [M 3 M 4] et M 5 le symétrique de M 1 par rapport à I. Montrer que les points M 1, M 2, M 5 et M 4 forment un carré.

CORRECTION

- 1: Cette équation est du second degré et a pour discriminant -8. Ses racines sont donc $-\sqrt{2} + i\sqrt{2}$ et $-\sqrt{2} - i\sqrt{2}$.
- 2: a: Ces deux complexes ont pour module 2.

 $Comme - \frac{\sqrt{2}}{2} = cos \ \frac{3 \, \pi}{4} \ et \ \frac{\sqrt{2}}{2} = sin \ \frac{3 \, \pi}{4} \ , \ on \ peut \ alors \ \'ecrire \ ces \ deux \ complexes \ sous \ leur \ forme \ trigonom\'etrique:$

$$z_1 = -\sqrt{2} + i\sqrt{2} = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$
 et $z_2 = -\sqrt{2} - i\sqrt{2} = 2\left(\cos\frac{-3\pi}{4} + i\sin\frac{-3\pi}{4}\right)$

b: Comme z_1 et z_2 ont même module 2, le rapport $\frac{z_1}{z_2}$ a pour module 1.

De plus, un argument de z_1 est $\frac{3\pi}{4}$ et un argument de z_2 est $\frac{-3\pi}{4}$, on peut dire qu'un argument de $\frac{z_1}{z_2}$ est : $\frac{3\pi}{4} - \frac{-3\pi}{4}$ soit $\frac{3\pi}{2}$

Ce qui montre que
$$\frac{z_1}{z_2} = \cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} = -i \operatorname{donc} \left(\frac{z_1}{z_2}\right)^2 = -1.$$

3: Rappels : Soit l'homothétie h de centre A d'affixe a et de rapport k non nul.

Pour tout point M du plan d'affixe z, $M' = h(M) \Leftrightarrow \overrightarrow{AM'} = k \overrightarrow{AM}$. l'affixe de M' = h(M) est : z' = a + k (z - a)

Soit la rotation ,de centre A, d'affixe a, d'angle α . Pour tout point M du plan d'affixe z, l'affixe de r(M) est : $z' = e^{i\alpha}(z - a) + a$.

a: L'affixe de M₃ est :
$$z_3 = -3[z_2 - \frac{\sqrt{2}}{2}] + \frac{\sqrt{2}}{2}$$
 ce qui donne : $z_3 = -3[\sqrt{2}(1-i) - \frac{\sqrt{2}}{2}] + \frac{\sqrt{2}}{2}$

$$z_3 = -\sqrt{2} + 3 i \sqrt{2} = \sqrt{2} (-1 + 3 i)$$

- **b:** L'affixe de M₄ est $z_4 = e^{-i\frac{\pi}{2}}$ $z_2 = -i$ z_2 ce qui donne : $z_4 = -i\sqrt{2}$ $(1-i) = -\sqrt{2}$ (1+i).
- **d:** $\frac{z_3 z_1}{z_4 z_1} = -i \text{ donc arg } \frac{z_3 z_1}{z_4 z_1} \equiv -\frac{\pi}{2} (2 \pi) \text{ soit } (\overline{M_1 M_4}, \overline{M_1 M_3}) \equiv -\frac{\pi}{2} (2 \pi)$

Les droites (M_3M_1) et (M_1M_4) sont orthogonales.

e: L'affixe de I est :
$$z_1 = \frac{z_3 + z_4}{2}$$
.

L'affixe de M₅ est :
$$z_5 = 2 z_1 - z_1 = \sqrt{2} (-3 + i)$$
.

On constate alors que :
$$|z_1 - z_3| = |z_3 - z_5| = |z_5 - z_4| = |z_4 - z_1|$$

On a donc un quadrilatère dont les côtés ont même longueur donc qui est un losange.

De plus, d'après la question précédente, le triangle M 3 M 1 M 4 est rectangle en M 1. Le losange possède un angle droit, c'est donc un carré.