1. On considère l'algorithme suivant :

Entrée	Saisir un réel strictement positif non nul a Saisir un réel strictement positif non nul b ($b > a$)
Lilitee	•
	Saisir un entier naturel non nul N
	Affecter à u la valeur a
Initialisation	Affecter à <i>v</i> la valeur <i>b</i>
	Affecter à <i>n</i> la valeur 0
	TANTQUE $n < N$
	Affecter à n la valeur $n + 1$
	Affecter à u la valeur $\frac{a+b}{2}$
Traitement	Affecter à ν la valeur $\sqrt{\frac{a^2 + b^2}{2}}$
	Affecter à <i>a</i> la valeur <i>u</i>
	Affecter à <i>b</i> la valeur <i>v</i>
Sortie	Afficher <i>u</i> , afficher <i>v</i>

Reproduire et compléter le tableau suivant, en faisant fonctionner cet algorithme pour a = 4, b = 9 et N = 2. Les valeurs successives de u et v seront arrondies au millième.

n	а	b	и	ν
0	4	9		
1				
2				

Dans la suite, a et b sont deux réels tels que $0 < a < \overline{b}$. On considère les suites (u_n) et (v_n) définies par :

$$u_0 = a$$
, $v_0 = b$ et, pour tout entier naturel $n : u_{n+1} = \frac{u_n + v_n}{2}$ et $v_{n+1} = \sqrt{\frac{u_n^2 + v_n^2}{2}}$

- **2.** a. Démontrer par récurrence que, pour tout entier naturel n, on a : $u_n > 0$ et $v_n > 0$.
- **b.** Démontrer que, pour tout entier naturel $n: v_{n+1}^2 u_{n+1}^2 = \left(\frac{u_n v_n}{2}\right)^2$.

En déduire que, pour tout entier naturel n, on a $u_n \le v_n$.

- **3.** a. Démontrer que la suite (u_n) est croissante.
- **b.** Comparer v_{n+1}^2 et u_{n+1}^2 . En déduire le sens de variation de la suite (v_n) .
- **4.** Démontrer que les suites (u_n) et (v_n) sont convergentes.

CORRECTION

1.

n	а	b	и	v
0	4	9	4	9
1	6,5	6,964	6,5	6,964
2	6,732	6,736	6,732	6,736

2. *a*. Montrons par récurrence que, pour tout entier naturel n, on a : $u_n > 0$ et $v_n > 0$. Initialisation : $u_0 = a$, $v_0 = b$ or a et b sont deux réels tels que 0 < a < b donc $u_0 > 0$ et $v_0 > 0$ Hérédité : Montrons pour tout n de \mathbb{N} , que si $u_n > 0$ et $v_n > 0$ alors $u_{n+1} > 0$ et $v_{n+1} > 0$.

$$u_{n+1} = \frac{u_n + v_n}{2}$$
 or $u_n > 0$ et $v_n > 0$ donc $u_{n+1} > 0$

et
$$v_{n+1} = \sqrt{\frac{u_n^2 + v_n^2}{2}}$$
 or $u_n > 0$ et $v_n > 0$ donc $v_{n+1} > 0$. La propriété est héréditaire

Pour tout entier naturel n, on a : $u_n > 0$ et $v_n > 0$.

b.
$$v_{n+1}^2 - u_{n+1}^2 = \frac{u_n^2 + v_n^2}{2} - \left(\frac{u_n + v_n}{2}\right)^2$$
.

$$v_{n+1}^2 - u_{n+1}^2 = \frac{u_n^2 + v_n^2}{2} - \frac{u_n^2 + v_n^2 + 2u_n v_n}{4}$$
.

$$v_{n+1}^{2} - u_{n+1}^{2} = \frac{2 u_{n}^{2} + 2 v_{n}^{2}}{4} - \frac{u_{n}^{2} + v_{n}^{2} - 2 u_{n} v_{n}}{4} = \frac{u_{n}^{2} + v_{n}^{2} - 2 u_{n} v_{n}}{4}$$

pour tout entier naturel
$$n: v_{n+1}^2 - u_{n+1}^2 = \left(\frac{u_n - v_n}{2}\right)^2$$
.

Pour tout entier naturel n, on a $v_{n+1}^2 - u_{n+1}^2 \ge 0$

donc $v_{n+1}^2 \ge u_{n+1}^2$, or pour tout entier naturel n, $u_n > 0$ et $v_n > 0$ donc $v_n \ge u_n$.

Pour tout entier naturel n, on a $u_n \le v_n$.

3. $u_{n+1} = \frac{u_n + v_n}{2}$ or pour tout entier naturel n, on a $u_n \le v_n$ donc $\frac{u_n + u_n}{2} \le \frac{u_n + v_n}{2}$ soit $u_n \le u_{n+1}$ donc la suite (u_n) est croissante.

b. pour tout entier naturel
$$n: v_{n+1}^2 - u_{n+1}^2 = \left(\frac{u_n - v_n}{2}\right)^2$$

or
$$\left(\frac{u_n - v_n}{2}\right)^2 \ge 0$$
 donc $v_{n+1}^2 \ge u_{n+1}^2$.

$$v_{n+1}^2 = \frac{u_n^2 + v_n^2}{2}$$
 or pour tout entier naturel n , on a $u_n^2 \le v_n^2$

donc
$$\frac{u_n^2 + v_n^2}{2} \le \frac{v_n^2 + v_n^2}{2}$$
 donc $v_{n+1}^2 \le v_n^2$

or pour tout n entier naturel, $v_n \ge 0$ donc $v_{n+1} \le v_n$, donc la suite (v_n) est décroissante.

4. Pour tout n entier naturel, $u_n \le v_n$ or la suite (v_n) est décroissante donc $v_n \le v_0$ donc pour tout n entier naturel, $u_n \le v_0$ La suite (u_n) est croissante et majorée par v_0 donc est convergente.

Pour tout n entier naturel, $0 \le v_n$. La suite (v_n) est décroissante et minorée par 0 donc est convergente.

Soit ℓ la limite de (u_n) et L la limite de (v_n) pour tout n de \mathbb{N} , on a $u_{n+1} = \frac{u_n + v_n}{2}$ donc $\ell = \frac{\ell + L}{2}$ donc $\ell = L$.