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ABSTRACT 

Many experimental and theoretical fast crack propagation studies have 

been performed during the last decades. This paper describes numerical 

experiments using Deform 2D, a bidimensional software working in 

non-linear dynamics on a microcomputer
1
. Rheological behaviour may 

be elastic, plastic, viscous, compressible, weighty. Plasticity  may be 

with or without upper yield stress, with or without strain-hardening. All 

these properties may be combined. Propagation of waves, glide bands 

and cracks have been visualised. A graphic user interface and an 

interface with standard Macintosh design software has been developed. 

Meshing is done automatically by clicking in the contour of the 

specimen. A cut is necessary for multiply connected geometries.  

The numerical simulation of fast crack propagation is compared 

with experiments
2
 on brittle plastics such as Homalite. The fracture 

criterion used is the Coulomb criterion. The tensile strength was adjusted 

to obtain the desired critical stress-intensity factor. The crack being 

defined by the cracked zone, with a thickness at least equal to the mesh 

size, a large number of meshes is necessary. Computations were 

performed on a single-edged-notched tensile specimens excentrically 

pin-loaded. The crack speed was found to have an approximately 

constant value of two thirds of the shear wave velocity, twice the 

experimental value. The computations were not precise enough to 

determine any relationship between speed and stress-intensity factor. 

Some crack bifurcation occurred, particularly on the moving side of the 

crack, but complete bifurcation was not obtained. A more detailed 

analysis and testing of the equations is under way to find a slightly better 

formulation. 



 

INTRODUCTION 

With the advent of microcomputers, numerical experimentation has been 

accessible to small companies for the price of an automobile. Though 

microcomputers have growing computing power, large computers 

remain necessary for complex structures. The proposed method is 

especially convenient for simulating laboratory tests. 

The computing method is based on dividing the domain into 

quadrilateral cells where stresses and strains are constant. Strains are 

determined directly from the variation of the geometry of the mesh 

during deformation. Stresses are related to strains using a constitutive 

law. Various conditions such as plasticity or fracture criterions or 

boundary conditions are checked. The force applied to an element 

obtained by joining the four immediate neighbours of  the considered 

node is calculated from the stresses. By numerical integration of 

Newton's law, the position of the nodes at each time step is computed 

and the computing cycle is repeated a large number of times. The 

principle of the computation is to replace analytical solutions by 

repeated elementary calculations directly on the simple formulae 

expressing the basic laws of mechanics. No simplifying assumptions 

such as incompressibility or symmetry considerations are used. On the 

other hand, remeshing, artificial viscosity or sophisticated numerical 

methods are not necessary. It seemed preferable to use a large number of 

nodes than a complicated algorithm.  

The problem of dynamic fracture is still unsolved. Two main 

questions are opened: the theoretically found crack speed is much higher 

than the experimental value and the assumed relationship between the 

speed and the stress intensity factor seems to be multivalued. 

THEORY 

Deformations   

In the formulation of continuum mechanics the configuration of a solid 

body is described by a continuous mathematical model whose 

geometrical points are identified with the place of the material particles 

of the body
3
  An infinitesimal vector of length ds, with coordinates dxi, 

becomes, after deformation, a vector of length ds', with coordinates dx'i. 



 

With first order approximation, the new coordinates are linearly related 

to the initial coordinates through the deformation gradient matrix
4
 : 
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are Green-Lagrange strains (finite strains). The strain tensor may be 

computed if one knows  the lengths of the sides of a triangle by solving a 

linear system of three equations with three unknowns. Volume strain is 

computed from the area of the triangle. Therefore volumetric and shear 

strains are separated. 

Applying formula (1) to the vector lying in the direction of the first 

coordinate axis, we find
5
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For small strains, this agrees with the classical definition of Cauchy 

infinitesimal strains
3
 used by  experimentators when, during a tensile 

test, they measure the length of the sample as a function of its initial 

length. The volume strain is approximated by 
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Stresses 

The constitutive law or rheological equation of state
6
 relates stresses and 

strains. The stress tensor will be the true stress (relative to the 

instantaneous geometry) and not the nominal or engineering stress 

(relative to the initial geometry). Indeed, Newton’s laws of mechanics 

are applicable to the current shape of a body.  

The stress tensor components !ij may be separated into spherical 

and deviator parts:  

  !
ij
 = ----------
!

mm

3
 "

ij
 + #
$

%
&
'

(!
ij
 - ----------
!

mm

3
 "

ij
 

 

(5) 



 

The constitutive law has also a spherical and a deviator part. The 

spherical part relates the pressure to the volume, it is what is currently 

called equation of state. A more general equation of state, the 

rheological equation of state, in differential form has been chosen. It is a 

linear combination of  a hypoelastic solid and a viscous fluid: 
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K is the bulk modulus, µ the shear modulus and " the viscosity. 

This constitutive law may be completed by, for example, a 

plasticity criterion (Tresca) : the  shear stress is limited by the maximum 

shear stress (half the uniaxial yield stress). The fracture criterion is 

defined in a similar way, but with a linear dependence of strength with 

pressure (Coulomb criterion). 

Movement 

The  motion of a region # bounded by a surface $ of the continuum is 

obtained by integrating Newton's law of motion 
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where % is the specific mass, &i and gi are the components of the 

accelerations of the centre of gravity of # and of gravity. dV and dS are 

elementary volume and surface elements. The ni are the components of 

the normal to surface $. 

The domain # being small, the density is constant and the 

components of the acceleration may be written 
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where 
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is the mass of the volume element #. Knowing the value of the right 

side of equation (8), the movement of the centre of gravity of # may be 

computed by a double quadrature that gives first its speed 
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and then its position 
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The volume element # being small, the rotation around the centre 

of gravity may be neglected. 

NUMERICAL SOLUTION 

The principle of discretization is represented on fig.1. The meshes, 

rectangular and identical on the figure, are be in practice squares inside 

the specimen and quadrilaterals near the contour. In every mesh, the  

stresses and strains are constant. On the boundary, the meshes have zero 

stresses. The boundary conditions may be of given position or speed or 

pressure. 

The strains are a linear function of the squares of the length of of 

the sides of the reference triangle, built with the diagonals of the 

quadrilateral cells, as may be shown from equation (2): 
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The aij and bijk coefficients may be computed once only, at 

program initialization or at each computing cycle. The results in this 

paper have been calculated with the second method (incremental) but it 

seems from earlier computations that better results with respect to crack 



 

bifurcation have been obtained with constant aij and bijk coefficients. 

This formula is used for the deviator strains. Volumetric strain is 

computed directly from the area of the cell, given by the cross-product 

of the diagonals of the mesh. 

Stresses are calculated from the strains using the rheological 

equation of state (6) . They are limited by the plasticity and fracture 

criterions. No special “elements” are used, the precision being simply 

limited by the mesh size and no assumption is made for the stresses at 

the crack tip except Tresca or Coulomb criterions. 

The movement of a node, considered as a material point, is 

computed by applying Newton's law to the solid defined by joining 

together the four nodes surrounding the considered node. It is (on fig.1) 

a lozange made from four half cells. The resultant force on an element is 

the sum of the four surface forces applied along its sides. At each time 

step, the acceleration, given by equation (10), is integrated numerically 

by finite differences of the first order, to obtain the components of the 

speed. Integration of equation (11) gives the components of the 

coordinates of the node. 

This computing cycle is repeated for each node and each time step. 

The Courant-Friedrich-Lewy criterion
7
 stating that, for stable 

computation, the propagation of the wave has to be smaller than a mesh 

during one time step. The computing time is hence inversely 

proportional to the size of the mesh. For one cycle it is proportional to 

the number of meshes. The total computing time is then proportional to 

the 1.5 power of the number of nodes. 
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Figure 1. Geometry and grid for a schematic tension test. 

USER INTERFACE  

The contours defining the problem geometry are created with the help of 

any Macintosh drawing program (fig.2). Three regions are to be defined 

by its contour: 

- the deformable body, to be meshed. 

- the physical domain where the nodes are allowed to move. 

- the moving part, imposing a displacement to the deformable body. 

Other contours may be introduced graphically:  pressurised zone, 

initial speed zone,reinforced zone… Each mesh having individual 

physical properties, it is possible to study composite materials (two 

isotropic components). 

Built-in conditions are obtained graphically if the region of the 

deformable body is not entirely contained in the physical domain or 

intersects the moving part. The same principle applies for other regions: 

the nodes or the meshes having given characteristics if they are in the 

given region. For example, nodes at the surface of the specimen that are 

in the pressurised zone have a given pressure. If meshes are entirely 



 

contained in the pressurised zone the initial pressure is the given  

pressure. It is not necessary to define individual characteristics of the 

nodes or meshes, this is taken automatically by the program directly 

from the drawing. Changing the total number of nodes is done simply by 

changing the figure in a dialog window. 

Contact is defined by testing if a node is or not inside the physical 

domain or the moving part. If there is contact, the speed of the node is 

made tangent to the contour.  

 

Figure 2. Graphical entry for a bending test. 

The three zones are designated by successively clicking the mouse 

inside each contour, resulting in the creation by the program of a 

Macintosh “region” associated with each zone. For built-in conditions, it 

is necessary that the specimen’s region intersects either or both of the 

moving part and the exterior of the physical domain. The conditions of 

the numerical experiment (overall dimensions, ambient pressure, applied 

or initial pressure, applied or initial speed, acceleration, duration of the 

applied pressure or speed, total number of nodes) and the physical 

constants for two materials (bulk modulus, shear modulus, lower and 

upper yield stresses, tensile strength, strain at fracture for strain-

hardening, internal Coulomb friction angle, viscosity, specific mass) are 

introduced through a printable dialog window. Other properties of the 

materials such as Young’s modulus, Poisson’s ratio, longitudinal and 

transverse wave speeds are computed from the preceding values and 

displayed in the window. The structure of the composite material is 



 

visualised in the same window by means of a pattern chosen in an other 

dialog window. 

Meshing is automatic, the meshes are squares except near the 

contour where the nodes are adjusted to it and become quadrilaterals. 

The software attributes to each mesh its own material and physical 

constants. 

Pressure, stresses, plastic zones or cracks, applied load and total 

volume change may be visualised. The results of the computations may 

be recorded on disk in graphical form (vectorial or bitmap) and replayed 

as an animation. A camera may be triggered to record the screen and 

create a moving picture.  

The software has been programmed in Pascal, first on an Apple II 

microcomputer, later on a Macintosh. A typical computing time is of 

about one day with 5000 nodes on a Macintosh II with 8 Mbytes of 

memory and System 7. One mesh necessitates about one kilobyte. In 

order to minimise computing times, it is necessary to use high rates of 

deformation. 

NUMERICAL EXPERIMENTS 

Geometry 

The specimen (thickness 5 mm) has a single edge notch. It was not 

possible to obtain a sharp crack, the notch radius being limited by the 

mesh size (0.3 mm for 5000 nodes). The notch depth waried between 13 

and 20 mm. The minimum size of the notch was limited by the fact that 

fracture occurred  at the boundary of the reinforcement around the pin 

holes. instead of appearing at the notch root. 
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Figure 3 Graphical entry. The input of the specimen geometry  is done 

by clicking in its contour. The overall dimensions are in mm. There are 

two holes for the moving and fixed pins. To obtain a simply connected 

region it is necessary to draw a line between each hole and the contour. 

The holes in the specimen are in fact half holes in order to have built-in 

conditions and avoid contact problems. The fixed and moving pins are 

full circles. The physical domain is described by the outer rectangle, 

excluding the fixed pin, from which a line is drawn to the outer rectangle 

to create a simply connected domain. The two rectangles around the pins 

show where the material is reinforced (high strength but otherwise 

identical material constants) to avoid cracking around the stress 

concentrations at the holes. 

Materials 

The materials studied are Homalite 100, Homalite 911 (CR 39) and 

PMMA. using data from the literature
2, 8

 In this paper, results on  CR 39  

only are given (Young’s modulus: 4.1 GPa, shear modulus: 1.4 GPa, 

density 1300 kg/m
3
,
 
tensile strength: Rt = 10 MPa.). The critical stress-

intensity factor KIc may be calculated to 0.3 MPa!m from the tensile 

strength and a mesh size ac of 0.3 mm (with  5000 nodes) using the 

formula : 

K
Ic

 = R
t
 2 a

c (13) 



 

It is near to the experimental value of 0.4. The maximum load (fig. 4 ) is 

found to be of 1200 N  to be compared with the experimental value
2
 of 

1667 N. The crosshead speed is 1 m/s, much larger than in the real 

experiments (1 inch / min). 
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Figure 4 Vertical (Fy) and horizontal (Fx) components of the force 

applied to the specimen. The horizontal component of the force is not 

zero, this dissymetry may be due to reflected waves on the sides of the 

specimen. The volume change "V/V increases rapidly at fracture due to 

the crack opening. 

The  stress distributions around the moving crack are represented 

on fig. 5.  Fig. 6 shows the crack propagation sequence. Fig. 7 represents 

the mean stress intensity factor and the crack length, during crack 

propagation, calculated from measurements on the pictures of fig. 6. At 

each time step the stress intensity factor is computed from  

KI = ( )!
xx

 + !
yy

 -------
" r

2  
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where r is the distance to the crack tip from the point of measurement. 

The crack speed may is almost constant at a value of 700 m/s, about 

twice the experimental value. There seems to be a maximum of speed 

around 220 µs, coinciding with a maximum of KI, as is observed 

experimentally
2
 but it is to be confirmed with more precise calculations. 

Numerical experiments were done with  a higher viscosity and also with 

a yield stress low enough to produce a plastic deformation, but no 



 

decrease of the crack velocity was found. The crack velocity remains the 

same for a lower  number of nodes (1000) that should give a higher 

fracture energy.  
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Figure 7  Stress-intensity and crack length from the data of fig. 6 

CONCLUSIONS 

An explicit method for the simulation of the dynamic non-linear  

behaviour of two-dimensional solid parts has been devised. The results 

obtained  so far agree with experiment, at least qualitatively.  

The number of nodes is still limited to a few thousands, enough to 

analyse the dynamical behaviour of simple parts of various materials. A 

very simple user interface allows people with a limited knowledge of 

continuum mechanics to use it. Students will study how changes the 

behaviour of a material when the material constants are changed. The 

main application is to help understand what happens during impact  It is 

hoped that the software may also be useful for understanding the static 

behaviour in the same fashion as with traditional finite element methods. 

The advantage of the method is that it is not limited to elastic behaviour. 

Viscoelastic and plastic behaviours, with or without an upper yield 

stress, shear bands and crack formation and propagation are easily 

simulated.  



 

Crack nucleation and propagation near a notch in a brittle material 

has been simulated (at least qualitatively) in a realistic manner on a 

graphical microcomputer with an explicit dynamical finite difference 

method. Crack propagation was successfully simulated with the 

Coulomb criterion, without using the concept of stress intensity factor as 

a fracture criterion. A significant relationship between crack speed and 

stress intensity factor was not yet found. This may be a question of 

precision that could be solved by using a finer mesh. Despite the 

relatively high number of nodes, the stress concentrations are too low 

and a more powerful microcomputer is necessary for better results. 

Modifying the fracture criterion to obtain a fracture energy independent 

of the mesh size will be necessary and the constitutive law may perhaps 

give a deeper insight on the parameter governing the crack speed. The 

numerical crack speed, like all theoretically predicted crack velocities
9
, 

is much higher than found from experimental data and unfortunately the 

question still remains unsolved.  
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