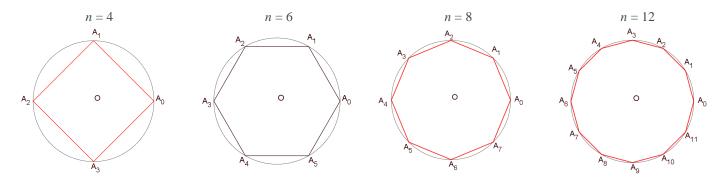
Le but de ce problème est de créer un algorithme permettant d'obtenir des approximations du nombre π .

Partie A : Une suite qui converge vers π

On considère un cercle C de centre O et de rayon 1, et un polygone régulier P_n à n côtés, inscrit dans C.



Pour tout $n \ge 3$, on notre p_n le périmètre de P_n .

1. Expliquer brièvement, par de simples considérations géométriques et sans calcul, pourquoi on peut conjecturer que la suite (p_n) tend vers 2π lorsque n tend vers $+\infty$.

Dans la suite du devoir on pose $a_n = \frac{p_n}{2}$ (C'est le demi-périmètre de P_n .)

La suite a_n est donc une suite qui semble converger vers π .

- 2. Justifier que chaque côté de P_n mesure $2 \sin\left(\frac{\pi}{n}\right)$ et en déduire que $a_n = n \sin\left(\frac{\pi}{n}\right)$.
- 3. Prouver, cette fois-ci à l'aide de calcul, qu'on a bien $\lim_{n \to +\infty} a_n = \pi$.
- 4. On évalue la vitesse de convergence d'une suite (u_n) convergent vers ℓ par $\lim_{n \to +\infty} \left| \frac{u_{n+1} \ell}{u_n \ell} \right|$.

La vitesse de convergence est comprise entre 0 (convergence rapide) à 1 (convergence lente) Grâce à un logiciel de calcul formel (Xcas), donner la vitesse de convergence de la suite (a_n).

Partie B: Une suite extraite

On considère maintenant la suite (u_n) définie pour $n \in \mathbb{N}$ par $u_n = 2^n \sin\left(\frac{\pi}{2^n}\right)$.

Cette suite est dite "extraite" de la suite (a_n) puisqu'on se contente d'en prendre les termes dont les indices sont des puissances de 2. Elle converge vers π aussi.

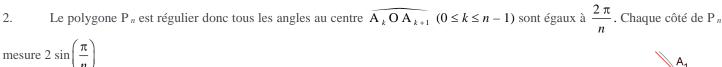
5. Grâce à un logiciel de calcul formel (Xcas), donner la vitesse de convergence de la suite (u_n)

CORRECTION

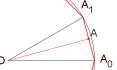
1. Lorsque n tend vers $+\infty$, le polygone P_n tend à se confondre avec le cercle C donc le périmètre p_n de P_n tend vers celui de C soit 2π .

Dans la suite du devoir on pose $a_n = \frac{p_n}{2}$ (C'est le demi-périmètre de P_n .)

La suite a_n est donc une suite qui semble converger vers π .



Soit A le milieu de $[A_0A_1]$. Dans le triangle isocèle OA_0A_1 , la médiane (OA) est aussi hauteur et bissectrice de $\widehat{A_0OA_1}$ donc le triangle OAA_0 est rectangle en A et $\widehat{A_0OA} = \frac{\pi}{n}$ donc



$$\sin\left(\frac{\pi}{n}\right) = \frac{AA_0}{OA_0} = AA_0 \text{ donc } A_0 A_1 = 2 AA_0 = 2 \sin\left(\frac{\pi}{n}\right).$$

Le polygone P_n a n côtés donc son périmètre p_n est égal à n A_0 $A_1 = 2$ n $\sin\left(\frac{\pi}{n}\right)$ donc $a_n = \frac{p_n}{2} = n$ $\sin\left(\frac{\pi}{n}\right)$

3. Soit
$$x = \frac{\pi}{n}$$
, alors $n = \frac{\pi}{x}$ donc $n \sin\left(\frac{\pi}{n}\right) = \pi \frac{\sin x}{x}$.

 $\lim_{n \to +\infty} \frac{\pi}{n} = 0 \text{ donc } \lim_{n \to +\infty} x = 0 \text{ or } \lim_{x \to 0} \frac{\sin x}{x} = 1 \text{ donc } \lim_{n \to +\infty} a_n = \pi.$

4.
$$a_n$$
 converge vers π , il suffit donc de demander $\lim_{n \to +\infty} \frac{(n+1)\sin\left(\frac{\pi}{n+1}\right) - \pi}{n\sin\left(\frac{\pi}{n}\right) - \pi}$,

D'après XCas : limite(((n+1)*sin(pi()/(n+1))-pi())/(n*sin(pi()/n)-pi()),n,+infinity) = 1 soit $\lim_{n \to +\infty} \left| \frac{a_{n+1} - \pi}{a_n - \pi} \right| = 1$, la vitesse est lente.

Partie B: Une suite extraite

5.
$$\frac{u_{n+1} - \pi}{u_n - \pi} = \frac{2^{n+1} \sin\left(\frac{\pi}{2^{n+1}}\right) - \pi}{2^n \sin\left(\frac{\pi}{2^n}\right) - \pi} = 2 \frac{\sin\left(\frac{\pi}{2^{n+1}}\right) - \frac{\pi}{2^{n+1}}}{\sin\left(\frac{\pi}{2^n}\right) - \frac{\pi}{2^n}}$$

D'après XCas : limite(((sin(pi()/(2^(n+1))-pi()/2^(n+1))/(sin(pi()/(2^n))-pi()/2^n),n,+infinity) = 0 soit $\lim_{n \to +\infty} \left| \frac{u_{n+1} - \pi}{u_n - \pi} \right| = 0$, la vitesse est rapide.