Dans un repère orthonormé ($O; \vec{i}, \vec{j}$) on considère la parabole P d'équation $y = x^2$ et le point A (1; 0) Déterminer le point M de la courbe tel que la distance AM soit minimale.

Pour tout réel x, on pose $f(x) = AM^2$ où M est le point de la courbe P.

- 1. Déterminer f(x)
- 2. Etudier les variations de f'(x)
- 3. En déduire que l'équation f'(x) = 0 admet une unique solution α sur \mathbb{R} .
- 4. Par dichotomie, déterminer un encadrement de α par deux réels a et b, où a et b sont défini à 10^{-4} près. Donner l'algorithme correspondant.

CORRECTION

1.
$$f(x) = AM^2 = (x-1)^2 + (x^2-0)^2$$
 donc $f(x) = x^4 + x^2 - 2x + 1$

2.
$$f'(x) = 4x^3 + 2x - 2$$

Il faut déterminer les variations de f'(x) donc calculons sa dérivée f'':

$$f''(x) = 12 x^2 + 2$$

Pour tout x réel, f''(x) est la somme de deux termes positifs $12 x^2$ et 4 donc est strictement positive donc f' est strictement croissante sur R.

3. f' est un polynôme donc a la même limite à l'infini que son terme de plus haut degré,

$$\lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} 4 x^3 = +\infty \text{ et } \lim_{x \to -\infty} f'(x) = \lim_{x \to -\infty} 4 x^3 = -\infty$$

f' est un polynôme donc est une fonction continue sur R, f' est strictement croissante sur R, $\lim_{x \to +\infty} f'(x) = +\infty$ et $\lim_{x \to +\infty} f'(x) = -\infty$

donc l'équation f'(x)=0 admet une unique solution α sur \mathbb{R} .

4.

Algorithme	Traduction sur calculatrice CASIO Programme : DICHOTOM		
Variables : A la borne inférieure de l'intervalle B la borne supérieure de l'intervalle C le centre de l'intervalle E l'amplitude de l'encadrement Initialisation : Fonction de type $Y=$ Entrées : A la borne inférieure de l'intervalle de départ B la borne supérieure de l'intervalle de départ E l'amplitude de l'encadrement cherché Y1 la fonction f Traitement : Tant que l'amplitude de l'intervalle [A; B] est supérieure à E: Déterminer le centre de l'intervalle [A; B]. Affecter cette valeur à C. Si f (A) $\times f$ (B) ≤ 0 Affecter C à B. Sinon, affecter C à A. Fin du si. Fin du tant que.	"A" ? \rightarrow A "B" ? \rightarrow B "AMPLITUDE" ? \rightarrow E Y=Type "FONCTION" ? \rightarrow Y1 While B $-$ A $>$ E $(A + B) / 2 \rightarrow C$ If Y1(A) \times Y1(C) \leq 0 Then C \rightarrow B Else C \rightarrow A IfEnd WhileEnd A B		

Mise en œuvre : a = 0.5897 et b = 0.5898 donc $0.5897 \le \alpha \le 0.5898$, voir tableau ci-dessous.

а	b	m	f(a)	f(b)	f(m)	b-a
0	1	0,5	- 2	4	- 0,5	1
0,5	1	0,75	- 0,5	4	1,1875	0,5
0,5	0,75	0,625	- 0,5	1,1875	0,2266	0,25
0,5	0,625	0,5625	- 0,5	0,2266	- 0,1631	0,125
0,56250	0,62500	0,59375	- 0,16309	0,22656	0,02478	0,06250
0,56250	0,59375	0,57813	- 0,16309	0,02478	- 0,07085	0,03125
0,57813	0,59375	0,58594	- 0,07085	0,02478	- 0,02346	0,01563
0,58594	0,59375	0,58984	- 0,02346	0,02478	0,00055	0,00781
0,58594	0,58984	0,58789	- 0,02346	0,00055	- 0,01148	0,00391
0,58789	0,58984	0,58887	- 0,01148	0,00055	- 0,00547	0,00195
0,58887	0,58984	0,58936	- 0,00547	0,00055	- 0,00246	0,00098
0,58936	0,58984	0,58960	- 0,00246	0,00055	- 0,00096	0,00049
0,58960	0,58984	0,58972	- 0,00096	0,00055	- 0,00020	0,00024
0,58972	0,58984	0,58978	- 0,00020	0,00055	0,00017	0,00012
0,58972	0,58978	0,58975	- 0,00020	0,00017	- 0,00001	0,00006