- 1. Montrer qu'il existe un unique réel α tel que : $x^5 + x 1 = 0$. On pourra utiliser une étude de fonctions.
- 2. On suppose que α est rationnel. On écrit donc $\alpha = \frac{p}{q}$ où p est dans \mathbb{Z} , q dans \mathbb{N}^* et la fraction $\frac{p}{q}$ irréductible.

Montrer que q divise p^5 . En déduire que q = 1.

Montrer ensuite que p divise 1. Obtenir une contradiction et conclure.

CORRECTION

1. Soit la fonction f définie sur \mathbb{R} par $f(x) = x^5 + x - 1$.

f est un polynôme donc est continue et dérivable sur \mathbb{R} et $f'(x) = 5x^4 + 1$

 $x^4 \ge 0$ donc $f'(x) \ge 1 > 0$ donc f est strictement croissante sur \mathbb{R} .

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^5 = +\infty \text{ et } \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^5 = -\infty$$

f est définie continue, strictement croissante sur \mathbb{R} , $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to -\infty} f(x) = -\infty$ donc f est une bijection de \mathbb{R} dans \mathbb{R} .

L'équation f(x) = 0 admet donc une solution α sur \mathbb{R} .

2. α est solution de $x^5 + x - 1 = 0$ donc $\alpha^5 + \alpha - 1 = 0$ soit $\frac{p^5}{q^5} + \frac{p}{q} - 1 = 0$ donc en multipliant par q^5 : $p^5 + p q^4 - q^5 = 0$

donc $p^5 = q^4 (1 - p)$

Soit $Q = q^3 (1 - p)$ alors $q Q = p^5$, $Q \in \mathbb{Z}$ donc q divise p^5 .

La fraction $\frac{p}{q}$ irréductible donc p et q sont premiers entre eux donc d'après le théorème de Bézout, il existe deux entiers relatifs u et v

tels que u p + v q = 1 donc $(u p)^5 = (1 - v q)^5 = 1 - 5 v q + 10 v^2 q^2 - 10 v^3 q^3 + 5 v^4 q^4 - v^5 q^5$

$$(u p)^5 = 1 - q (5 v + 10 v^2 q - 10 v^3 q^2 + 5 v^4 q^3 - v^5 q^4)$$

 $5 v + 10 v^2 q - 10 v^3 q^2 + 5 v^4 q^3 - v^5 q^4 \in \mathbb{Z}$ donc q et p^5 sont premiers entre eux

q est un entier naturel, q divise p^5 et q et p^5 sont premiers entre eux donc q = 1.

$$p^5 + p q^4 - q^5 = 0$$
 et $q = 1$ donc $p^5 + p - 1 = 0$ soit $p(p^4 + 1) = 1$

 $p^4 + 1 \in \mathbb{N}$ donc p divise 1 or $p \in \mathbb{Z}$ donc p = 1 ou -1 donc $\alpha = 1$ ou -1

1 et – 1 ne sont pas solutions de $x^5 + x - 1$ donc l'hypothèse α rationnelle conduit à une contradiction, α n'est pas rationnel.